atom at a distance $2 \cdot 64 \AA$. Four such oxygen atoms, a water molecule and a chromium atom thus form a distorted octahedron about each of the two chromium atoms in a molecule.

As in the case of cupric acetate, apart from van der Waals forces, hydrogen bonds again appear to be the main forces between the molecules. Each chromous acetate molecule is linked by eight such bonds (2.82 and $2 \cdot 89 \AA$) to four neighbouring molecules at different levels. For further details about the atomic arrangement, reference should be made to the paper describing the structure of cupric acetate.

Discussion of the bonds

When the paper on cupric acetate was sent for publication, no reliable magnetic data were available, so that only the interatomic distance suggested a direct $\mathrm{Cu}-\mathrm{Cu}$ bond. Shortly afterwards Bleaney \& Bowers (1952) published a paper containing detailed magnetic measurements, and suggested interaction between the copper atoms. These two independent determinations make it certain now that a bond does exist between the copper atoms. From the remarkable similarity
between the chromous and cupric acetate structures, it seems reasonable to infer that a direct bond also exists between the two chromium atoms.
The configuration around the chromium atom described in this paper disagrees with the tetrahedral co-ordination proposed by King \& Garner (1950) to explain the diamagnetism they observed for chromous acetate.

We wish to thank Mr J. H. Talbot for his help with the calculations and the Council for Scientific and Industrial Research for permission to publish this paper.

References

Bleanex, B. \& Bowers, K. D. (1952). Proc. Roy. Soc. A, 214, 451.
Hatfield, M. R. (1950). Inorganic Syntheses, vol. 3, p. 148. New York: McGraw Hill.

King, W. R. \& Garner, C. S. (1950). J. Chem. Phys. 18, 689.
Niekere, J. N. van \& Schoening, F. R. L. (1953). Acta Cryst. 6, 227.
Peligot, E. M. (1844). Ann. Chim. (Phys.), (3), 12, 541. Robertson, J. M. (1935). Proc. Roy. Soc. A, 150, 106.

The Crystal Structure of a cycloNucleoside

By J. Zussman*
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 10 December 1952)

Abstract

X-ray analysis has been used to discover the nature of a chemical rearrangement undergone by certain nucleoside derivatives to form cyclonucleosides. Crystals of the iodide of $\mathbf{2}^{\prime}: \mathbf{3}^{\prime}$-isopropylidene, $3: 5^{\prime}$-cycloadenosine are orthorhombic with $a=5 \cdot 4, b=15 \cdot 4, c=18 \cdot 1 \AA$. The space group is $P 2_{1} 2_{1} 2_{1}$ and there are four molecules in the unit cell. The y and z atomic coordinates were determined by use of the heavy-atom method applied to the (100) projection; x coordinates by use of 'higher layer projection' techniques. The purine ring system is planar and makes an angle of 90° with the puckered furanose ring to which it is joined by a β glycosidic linkage.

Crystals of 5^{\prime} iodo, $2^{\prime}: 3^{\prime}$ isopropylidene uridine are orthorhombic, $P 2_{1} 2_{1} 2_{1}$, with $a=5 \cdot 42$, $b=15 \cdot 4, c=16 \cdot 7 \AA$, and the unit cell contains four molecules. This substance has been examined in the (100) projection only, and shows by contrast a normal covalent iodide structure.

Introduction

In recent years, one of the projects undertaken in this laboratory has been the investigation of the crystal structures of nucleic acid constituents and their derivatives. It has consisted mainly in the detailed investigation of pyrimidines and purines, with particular interest in their tautomeric forms, but it was also intended that more complex units (i.e. nucleosides and nucleotides) should be examined.

[^0]The structures of 2 -amino,4-methyl-6 chloropyrimidine and 2 -amino,4-6 dichloropyrimidine (Clews \& Cochran, 1948), 5 -bromo,4-6 diaminopyrimidine and 4 -amino, 2-6 dichloropyrimidine (Clews \& Cochran, 1949), adenine hydrochloride hemihydrate (Broomhead, 1948;Cochran, 1951) and guanine hydrochloride monohydrate (Broomhead, 1951) have been reported.
The present study of certain nucleoside derivatives is part of this programme, and also provides the solution of a specific chemical problem. An account of part of this more recent work, mainly from a chemical standpoint, has already been published (Clark, Todd \&

Zussman, 1951). It is the purpose of this paper to give (a) a concise statement of the particular chemical problem involved, (b) a description of the completed crystallographic analysis and (c) discussion of the results obtained.

Symbols have their conventional meanings unless otherwise stated.

The chemical problem

One of the most powerful methods applied to the study of nucleic acids is that of chemical synthesis. This has been used by Prof. A. R. Todd and his co-workers, who have attempted the synthesis of nucleosides, nucleotides and polynucleotides, demonstrating at each stage the constitution and configuration of their products. In the case of the particular synthesis described (Clark et al., 1951), the compound 5^{\prime}-iodo, $2^{\prime}: 3^{\prime}$ isopropylidene adenosine, formula

was required for the preparation of muscle adenylic acid (adenosine 5^{\prime} phosphate). In the course of the synthesis, however, only an ionic iodide could be obtained, suggesting that a rearrangement had occurred involving either alkylation, which could be intraor inter-molecular, or elimination of iodine to give the salt of a riboseen derivative. This latter possibility was ruled out through the evidence of infra-red absorption spectra. The possibility of intermolecular alkylation resulting in dimerization was disproved, and also the precise nature of the rearrangement was discovered, as a result of the X-ray crystal structure analysis described below.

Determination of structure in projection

Crystals of the iodide, prepared by Dr J. Davoll, were in the form of needles approximately 0.03 mm . in diameter and $1-2 \mathrm{~mm}$. in length. The cell dimensions were found to be

$$
a=5 \cdot 4, b=15 \cdot 4, c=18 \cdot 1 \AA \quad(\text { all } \pm 1 \%)
$$

and the space group $P 2_{1} 2_{1} 2_{1}$. The measured specific gravity was $1.81 \pm 1 \%$. From these, the total weight of the cell content is given as 1640 . The smallest number of asymmetric units per cell possible in this space group is 4 . Thus the maximum weight of each unit is approximately 410. This corresponds to the molecular weight (417) of one unit of $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{5} \mathrm{I}$. Thus the units in the crystal are monomers, and so the rearrangement must be intramolecular. Since the crystal possessed a short axis, it seemed likely that deter-
mination of the projection of the structure along it would be sufficient to show the nature of the rearrangement, and further X-ray work was undertaken to this end.

It was decided to use copper radiation for recording 0 kl intensities in spite of the high linear absorption coefficient, since the crystal had a small and regular cross-section. The intensities were recorded in a Weissenberg camera, measured by visual comparison with an intensity scale, and corrected for Lorentz and polarization effects, yielding a set of values $G_{0 k l}^{2}$. No correction was made for absorption since it was assumed that its effect would vary as a smooth function of $\sin \theta$. A Patterson map was derived using $G_{0 k l}^{2}$'s as coefficients, and from this the coordinates of the iodine atoms were readily determined. These were used to estimate the phase angles (0 or π) of all but 60 of the 300 reflexions observed, and a Fourier synthesis using $G_{0 k l}$ values gave the first approximate electron density map shown in Fig. 1. The six- and five-

Fig. 1. cycloNucleoside: projection of electron donsity on (100), derived using phases angles determined by heavy atom alone. Contours at an arbitrary interval.
membered rings of the purine were easily recognisable and the remaining atoms of the sugar and its substituents were identified.

At this stage the nature of the rearrangement was apparent, but a more accurate representation of the electron density seemed desirable and so the process of Fourier refinement was undertaken. At first, structure factors were evaluated approximately for those terms omitted from the first synthesis, with the aid of a mechanical 'structure factor balance' (Bragg, 1952). Later, more accurate values of the structure amplitudes were calculated using the sampling method described by Sayre (1951), although the contributions of the iodine atoms were calculated separately and by other means. The model atoms used for the sampling were derived by transforming Hartree f curves which had been modified by a temperature factor $\exp \left[-1 \cdot 0 \sin ^{2} \theta\right]$. A similar factor was applied to the

Thomas-Fermi scattering curve for iodine, and the 'light atom' and iodine contributions were combined to give a set of calculated structure amplitudes (F_{c} 's). The G values were placed on the scale of the F_{c} 's, and the agreement factor R was found to be $0 \cdot 185$. An $\left(F_{o}-F_{c}\right)$ synthesis was performed, giving a $\left(\sigma_{o}-\sigma_{c}\right)$ map on the basis of which small changes were made in some atomic coordinates, after which $R=0 \cdot 165$. The map also indicated that a ratic $f_{\mathrm{I}} / f_{L}\left(f_{\mathrm{I}}\right.$ and f_{L} are atomic scattering factors for iodine and for the average light atom respectively) other than that assumed, would yield better structure-amplitude agreement. The 'light atom' scattering curves were assumed to be correct and values of f_{I} were determined by a leastsquares method which minimized $\Sigma\left(\left|F_{o}-F_{c}\right|\right)$. It seemed reasonable to assume that two modifications to the Thomas-Fermi curve could be expected: (1) a depression of the curve as a whole by a small amount (theoretically ~ 1 unit) due to the effect of dispersion; (2) modification by a temperature factor other than that assumed. Thus a curve f_{I}^{\prime} related to the ThomasFermi curve $f_{\text {T. F. }}$ by

$$
f_{\mathrm{I}}^{\prime}=\left(f_{\mathrm{T} . \mathrm{F} .}-m\right) \exp \left(-K \sin ^{2} \theta\right)
$$

where K and m are constants, was fitted as nearly as possible through the points determined by the leastsquares solution, and this was used to give the iodine contributions in the next structure-amplitude calculation. G values were rescaled to the new set of F_{c} 's, another difference synthesis was performed, followed by an F_{o} synthesis the result of which is shown in

Fig. 2. cycloNucleoside: projection of electron density on (100) after refinement of parameters. Contour intervals: for iodine, 20 e. \AA^{-2}, beginning at zero; for other atoms, 2 e. \AA^{-2}, beginning at 2 .

Fig. 2. The value of R attained was $0 \cdot 14$, and no further refinement of the projection was attempted.

It was stated in the earlier paper (Clark et al., 1951) that a model of the molecule used in conjunction with the electron-density projection gave the separation $\mathrm{C}_{5}^{\prime}-\mathrm{N}_{3}$ as appruximately $1 \cdot 5 \AA$. Since then, the posi-
tions of the atoms have been determined explicitly in the manner described in the following section.

Determination of ' x ' coordinates using 'higher layer projections'

The normal method of structure analysis by consideration of two projections did not promise to be useful in this case. The hair-like crystals could not be used for collecting reliable data for a projection along any but the needle axis, and even if such data were obtained, the projections would show excessive overlapping of molecules and iodine ions. It was decided, therefore, to use the method of higher layer syntheses, since reliable data could be collected for at least the first and second layers of the ' a ' axis projection, and these should furnish a moderately accurate determination of the ' x ' coordinates. The method has been mentioned and used in various applications by Clews \& Cochran (1949), Dyer (1951) and Raeuchle \& Rundle (1952), and a fuller description of it is given by Cochran \& Dyer (1952). The scheme for using higher layer projections in the present case was as follows:
(a) Determination of very approximate ' x ' coordinates from first-layer Patterson map.
(b) Improvement on these using second-layer Patterson map.
(c) Further improvement and refinement using second-layer 'weighted density' maps.

Stages (a) and (b) involved a more detailed analysis of Patterson maps than had hitherto been required since it was necessary to obtain quantitative interpretations of the heights of iodine-'light atom' vector peaks. Sharpened Patterson maps were therefore prepared with each of the zero-, first-, and second-layer $|F|^{2}$ values. Two of these are shown in Figs. 3 and 4, and in Fig. 4 the calculated iodine-'light atom' vector set is marked by dots. (First- and second-layer intensity data were collected using equi-inclination Weissenberg photographs, and again no absorption correction was made.)

The coordinate, x_{1}, of the iodine atom was deter-

Fig. 3. cycloNucleoside: zero-layer Patterson projection on (100). Zero level broken.
mined unambiguously and directly from the first-layer Patterson map, since it showed three peaks due to iodine-iodine interaction, of heights proportional to $(-1),\left(-\cos 2 \pi 2 x_{1}\right)$ and $\left(\cos 2 \pi 2 x_{1}\right)$ respectively. The

Fig. 4. cycloNucleoside: first-layer Patterson projection on (100), with calculated I-light-atom vectors superimposed. Broken lines indicate negative contours.
coordinates of the other atoms were estimated by considering iodine-'light atom' peaks, expressing their heights as fractions of the origin peak height, and comparing these fractions with the fractional heights of corresponding peaks on the zero-layer map (see Dyer, 1951). In this way a first approximate set of x parameters was obtained, using only those peaks which were seen to conform to two conditions: (i) good resolution from neighbouring (I-light atom) peaks, as shown by the calculated Patterson diagram; (ii) absence of a chance accumulation of (light atom-light atom) peaks, as shown by the zero-layer diagram.

Each light atom was involved in four interactions
Table 1. $2^{\prime}: 3^{\prime}$-isoPropylidene $3: 5^{\prime}$-cycloadenosine iodide : x coordinates derived from first- and secondlayer Patterson diagrams

	First layer	Second layer
Atom	-	0.95
C_{2}	-	0.15
C_{4}	0.00	0.00
C_{5}	0.93	0.85
C_{6}	0.27	0.30
C_{8}^{\prime}	-	-
C_{1}^{\prime}	-	0.32
C_{2}^{\prime}	0.36	0.35
C_{3}^{\prime}	0.40	$0 \cdot 44$
C_{4}^{\prime}	0.34	0.32
C_{5}^{\prime}	-	-
C_{6}^{\prime}	-	-
C_{7}^{\prime}	0.65	0.65
C_{8}^{\prime}	0.85	0.80
$\mathrm{~N}_{1}$	0.07	0.14
$\mathrm{~N}_{3}$	0.34	0.35
$\mathrm{~N}_{6}$	0.01	0.09
$\mathrm{~N}_{7}$	0.39	0.35
$\mathrm{~N}_{9}$	0.51	0.58
O_{1}^{\prime}	-	0.39
O_{2}^{\prime}	0.36	0.34
O_{3}^{\prime}	0.775	0.770
I		

with an iodine atom and so there was a reasonable chance of a resolved peak corresponding to one or more of them. Each peak gave a value for $\cos 2 \pi\left(x-x_{1}\right)$ or $\cos 2 \pi\left(x+x_{1}\right)$, where x is the coordinate of the atom concerned. For an atom where both of these values was known, x was given unambiguously, and this was the case for ten of the twenty-one atoms. In most of the remaining cases, use of a model enabled a correct choice to be made between the two solutions given by the value of only one of the above functions.

The heights of peaks in the second-layer Patterson map gave values of $\cos 2 \pi 2\left(x-x_{1}\right)$ or $\cos 2 \pi 2\left(x+x_{1}\right)$, so that from any one peak four values of x were obtained, and the one nearest to that determined from the first layer map was taken as correct. The heights of second layer peaks are more sensitive to changes of ' x ' and so give a more accurate solution.
' x ' coordinates derived from first and second layer Patterson maps are given in Table 1.

Use of 'weighted density' projections

Let us define ${ }_{H} \sigma_{c}$ and ${ }_{H} \sigma_{s}$ by
and

$$
\left.\begin{array}{l}
A_{H} \sigma_{c}=V \int_{-\frac{1}{2}}^{\frac{1}{2}} \varrho_{(x, y, z)} \cos 2 \pi H x d x \tag{1}\\
A_{H} \sigma_{s}=V \int_{-\frac{1}{2}}^{\frac{1}{2}} \varrho_{(x, y, z)} \sin 2 \pi H x d x
\end{array}\right\}
$$

where A is the area of projection, and H is an even integer denoting a layer of the reciprocal lattice. Then it may be shown that for the a-axis projection of the space group $P 2_{1} 2_{1} 2_{1}$
and

$$
\left.\begin{array}{rl}
A_{H} \sigma_{c} & =\sum_{k}^{\infty} \sum_{l}^{\infty} A_{H k l}^{\prime} \cos 2 \pi(k y+l z) \tag{2}\\
A_{H} \sigma_{s} & =\sum_{k}^{\infty} \sum_{-\infty}^{\infty} B_{H k l}^{\prime} \cos 2 \pi(k y+l z)
\end{array}\right\}
$$

where $A_{H k l}^{\prime}$ and $B_{H k l}^{\prime}$ are respectively the real and imaginary parts of the structure amplitudes of the H th layer (see Cochran \& Dyer, 1952). That is, if $A_{2 k l}^{\prime}$ and $B_{2 k l}^{\prime}$ are used instead of $F_{0 k l}$ in a Fourier synthesis, the map obtained will show not $\sigma\left(={ }_{0} \sigma_{c}\right)$, but ${ }_{2} \sigma_{c}$ and ${ }_{2} \sigma_{s}$ respectively, which are projections of a weighted electron density, the density at a height x being weighted by the factor $\cos 2 \pi 2 x$ or $\sin 2 \pi 2 x$.

It may also be shown that for a single atom at (x, y, z)

$$
\text { and } \left.\quad \begin{array}{rl}
{ }_{H} \sigma_{c} & ={ }_{H} \sigma_{(y z)}^{\prime} \cos 2 \pi H x \\
{ }_{H} \sigma_{y z}^{\prime} & =\frac{1}{A} \sum_{k}^{\infty} \sum_{l}^{\infty} f_{H k l} \exp [-2 \pi i(k y+l z)] \tag{3}
\end{array}\right\}
$$

That is, whereas the normal projected electron density of an atom may be derived from the values of the atomic scattering factor for points on the zero

Fig. 5. cycloNucleoside: map of $(a){ }_{2} \sigma_{c},(b){ }_{2} \sigma_{s}$. Contour interval for iodine is five times that for other atoms. Broken lines indicate negative contours.

Fig. 6. cycloNucleoside: structure as viewed along a axis showing one molecule and its environment.
layer of the reciprocal lattice, ${ }_{H} \sigma_{(y z)}^{\prime}$ is derived from those for points on the H th layer.
If maps of ${ }_{2} \sigma_{c}$ and ${ }_{2} \sigma_{s}$ are prepared in accordance with the definitions of (3), they may be sampled and the values of $A_{2 k l}^{\prime}$ and $B_{2 k l}^{\prime}$ found. This was done using the x coordinates previously determined.
The calculated values of $A_{2 k l}^{\prime}$ and $B_{2 k l}^{\prime}$ were used to find $\alpha_{2 k l}$ for each reflexion, and this was used to
give a set of values $\left|F_{c}\right|$ which were compared with $\left|F_{o}\right|$'s derived from the observed intensities. The R index was found to be 0.28 .

Using the calculated values of $\sin \alpha$ and $\cos \alpha$, A_{o}^{\prime} and B_{o}^{\prime} were derived and used as coefficients in Fourier syntheses to give maps of ${ }_{2} \sigma_{c}$ and ${ }_{2} \sigma_{s}$ in accordance with (2). From each of these a new set of coordinates was derived in the following way:

Fig. 7. cycloNucleoside: structure as viewed along c axis.

Table 2. 2^{\prime} : 3^{\prime}-isoPropylidene, 3:5'-cycloadenosine iodide: atomic coordinates

Atom	x / a	y / b	z / c
C_{2}	0.932	$0 \cdot 416$	$0 \cdot 466$
C_{4}	$0 \cdot 134$	$0 \cdot 371$	$0 \cdot 366$
C_{5}	0.022	$0 \cdot 430$	$0 \cdot 320$
C_{6}	0.856	0.481	$0 \cdot 350$
C_{8}	$0 \cdot 260$	0.358	$0 \cdot 250$
C_{1}^{\prime}	$0 \cdot 530$	$0 \cdot 248$	$0 \cdot 343$
C_{2}^{\prime}	0.315	$0 \cdot 180$	$0 \cdot 355$
C_{3}^{\prime}	0.310	0.175	$0 \cdot 445$
C_{4}	$0 \cdot 427$	$0 \cdot 250$	$0 \cdot 469$
C_{5}^{\prime}	$0 \cdot 277$	0.331	$0 \cdot 495$
C_{6}^{\prime}	$0 \cdot 440$	0.051	$0 \cdot 397$
C_{7}^{\prime}	0.730	0.053	$0 \cdot 399$
C_{8}^{\prime}	$0 \cdot 659$	0.454	$0 \cdot 103$
N_{1}	$0 \cdot 822$	0.471	0.426
N_{3}	$0 \cdot 120$	$0 \cdot 365$	0.439
N_{6}	0.348	0.031	$0 \cdot 189$
N_{7}	0.098	0.417	0.248
N_{9}	$0 \cdot 346$	$0 \cdot 328$	$0 \cdot 322$
O_{1}^{\prime}	$0 \cdot 600$	0.259	$0 \cdot 406$
O_{2}^{\prime}	$0 \cdot 360$	0.096	$0 \cdot 338$
O_{3}^{\prime}	$0 \cdot 324$	0.094	$0 \cdot 461$
I	$0 \cdot 770$	0.1942	$0 \cdot 1515$

If there are n atoms of one type with postulated coordinates x_{j}, and corresponding peak heights ${ }_{2} \sigma_{c i}$, then the theoretical maximum peak height is given approximately by

$$
\begin{equation*}
{ }_{2} \sigma_{c_{\max .}}=\frac{1}{n} \cdot \sum_{j=1}^{j=n} \frac{{ }_{2} \sigma_{c j}}{\cos 2 \pi 2 x_{j}}, \tag{4}
\end{equation*}
$$

provided that n is large and the postulated coordinates are nearly correct.

Using values of $\sigma_{\text {max }}$. estimated by (4), the x coordinate of each atom was given by

$$
{ }_{2} \sigma_{c_{j} / 2} \sigma_{c_{\text {max. }}}=\cos 2 \pi 2 x_{j}
$$

Similarly, a set of x_{j} values was obtained from the ${ }_{2} \sigma_{s}$ map, and averages of the two sets were used to recalculate $A_{2 k l}^{\prime}$ and $B_{2 k l}^{\prime}$. After rescaling by comparing averages of $\left|F_{o}\right|$ and $\left|F_{c}\right|, R$ was found to be $0 \cdot 23$.
A_{o}^{\prime} and B_{o}^{\prime} were recalculated using new values of α, and new maps of ${ }_{2} \sigma_{c}$ and ${ }_{2} \sigma_{s}$ (Fig. 5) were derived from which were obtained the final list of x coordinates shown in Table 2.
$\left|F_{o}\right|$ and $\left|F_{c}\right|$, for zero and second layers, are compared in Table 3.

Description of structure

Figs. 6 and 7 show the structure as viewed along the ' a ' and ' c ' axes respectively. Fig. 8 shows bond lengths and bond angles, and also displays details of analogous parts of the adenine molecule (Cochran, 1951) and of cytidine (Furberg, 1950). The environment of the iodine ion and intermolecular contacts are shown in Fig. 6.

Table 3. Comparison of $\left|F_{o}\right|$ and F_{c} for the cyclonucleoside
(All F values are for one molecule, but have been multiplied by 10)

	l	\boldsymbol{F}_{o}	F_{c}		l	F_{0}	F_{c}		l	F_{o}	F_{c}
$k=0$	0	-	2060		7	302	-289		2	93	- 86
	2	70	- 92		8	241	-244		3	69	72
	4	428	-459 ${ }^{\circ}$		9	96	62		4	127	-133
	6	390	338		10	23	18		5	259	-256
	8	23	24		11	48	42		6	137	157
	10	406	-373		12	116	121		7	74	64
	12	169	187		13	131	-151		8	16	18
	14	50	50		14	41	- 43		9	196	183
	16	128	-144		15	43	35		10	95	-111
	18	-	- 34		16	-	- 17		11	155	-140
	20	101	133		17	61	72		12	51	43
	22	38	-30		18	45	55		13	49	-54
					19	79	- 75		14	140	152
$k=1$.	1	138	113		20	-	- 11		15	75	90
	2	72	83		21	-	-30		16	23	19
	3	195	-187		22	-	-17		17	-	-25
	4	356	-331		23	33	34		18	31	5
	5	183	128						19	61	-63
	6	248	-257	$k=4$	0	34	38		20	36	43
	7	93	91		1	300	-313		21	63	62
	8	168	174		2	-	-3		22	-	-7
	9	157	-144		3	140	-106				
	10	-	2		4	183	-181	$k=7$	1	-	-5
	11	21	- 22		5	328	310		2	276	278
	12	198	-196		6	20	22		3	136	158
	13	88	89		7	113	- 89		4	154	-146
	14	98	94		8	-	-13		5	32	-47
	15	55	76		9	239	-265		6	60	- 78
	16	61	73		10	73	71		7	125	-138
	17	-	- 24		11	244	250		8	239	232
	18	88	-90		12	28	35		9	74	90
	19		- 26		13	70	83		10	-	12
	20	22	22		14	35	32		11	39	42
	21	-	万		15	153	-160		12	81	-83
	22	51	53		16	68	- 80		13	78	- 81
	23	5	-12		17	32	37		14	98	88
					18	-	-13		15	23	17
$k=2$	0	263	-274		19	68	76		16	-	25
	1	172	165		20	-	17		17	55	60
	2	55	58		21	66	-65		18	99	-95
	3	199	158		22	-	-3		19	-	-20
	4	196	210		23	-	0		20	-	-5
	5	331	-341						21	-	-11
	6	327	-283	$k=5$	1	260	287		22	-	14
	7	170	156		2	128	-135				
	8	87	- 75		3	386	-407	$k=8$	0	318	-299
	9	129	131		4	24	- 37		1	96	-110
	10	217	238		5	74	72		2	100	109
	11	108	-100		6	45	68		3	73	- 79
	12	66	- 76		7	272	286		4	184	196
	13	35	-51		8	35	- 29		5	83	98
	14	116	-133		9	183	-189		6	224	-216
	15	122	134		10	-	5		7	73	- 79
	16	104	111		11	44	-53		8	38	- 42
	17	103	-104		12	-	-9		9	83	- 86
	18	32	0	,	13	192	198		10	171	127
	19	46	-51		14	96	- 98		11	73	93
	20	58	-, 66		15	51	- 47		12	84	- 73
	21	43	51		16	-	-3		13	-	13
	22	25	28		17	93	-97		14	52	-53
	23		7		18	66	63		15	62	- 62
					19	71	72		16	81	81
$k=3$	1	271	-248		20	-	6		17	-	22
	2	296	-303		21	26	25		18	21	-13
	3	293	316		22	-	4		19	-	2
	4	59	88						20	64	-71
	5	20	21	$k=6$	0	85	81		21	-	-20
	6	59	51		1	290	293				

Table 3 (cont.)

	l	F_{o}	F_{c}
$k=9$	1	29	26
	2	293	-279
	3	-	-15
	4	84	79
	5	154	-147
	6	171	184
	7	24	- 34
	8	144	-153
	9	62	50
	10	-	18
	11	48	- 21
	12	200	183
	13	-	-3
	14	105	-110
	15	32	-3
	16	71	- 76
	17	31	-17
	18	81	82
	19	-	-23
	20	-	-22
	21	-	19
$k=10$	0	140	121
	1	84	-85
	2	79	-90
	3	125	-146
	4	101	-111
	5	63	76
	6	244	226
	7	-	23
	8	-	17
	9	70	- 66
	10	232	-210
	11	133	94
	12	33	28
	13	61	69
	14	88	93
	15	59	-69
	16	70	- 81
	17	-	27
	18	27	- 26
	19	-	26
	20	35	44
$k=\mathrm{Il}$	1	34	51
	2	173	198
	3	109	-112
	4	102	-109
	5	28	7
	6	46	- 39
	7	119	118
	8	124	129
	9	-	I
	10	-	- 21
	11	32	9
	12	33	- 28
	13	50	46
	14	57	64
	15	46	-39
	16	-	8
	17	37	-47

	l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°
	$l=0$	1	-	77
	2	156	149	0
	3	190	175	90
	4	420	377	0
	5	116	87	90

	l	F_{0}	F_{c}
	18	57	-56
	19	30	33
$k=12$	0	-	-8.
	1	153	175
	2	31	41
	3	37	33
	4	120	120
	5	121	-130
	6	-	3
	7	78	72
	8	32	- 24
	9	87	102
	10	-	14
	11	105	-107
	12	32	-4
	13	-	-16
	14	68	- 50
	15	39	49
	16	27	13
	17	30	- 22
	18	20	3
$k=13$	I	70	- 71
	2	81	- 78
	3	139	149
	4	-	10
	5	23	- 28
	6	23	- 14
	7	119	-121
	8	95	- 84
	9	101	95
	10	-	5
	11	58	71
	12	31	27
	13	106	-93
	14	36	-40
	15	-	-9
	16	24	-3
	17	39	51
$k=14$	0	107	- 99
	1	105	- 122
	2	32	-23
	3	23	- 38
	4	63	61
	5	113	119
	6	44	- 49
	7	-	-5
	8	22	12
	9	60	- 65
	10	-	10
	11	71	76
	12	28	-7
	13	-	-12
	14	-	- 23
	15	63	- 75
	16	34	31
$k=15$	1	77	74
	2	32	- 36
	3	86	- 98

$2 k l$ reflexions

l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°	l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°
6	375	322	180	11	-	3	270
7	-	16	270	12	119	96	180
8	61	88	180	13	-	40	270
9	30	28	270	14	124	127	180
10	271	262	0	15	44	43	270

Table 3 (cont.)

	l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°		l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°		l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°
	16	91	78	0		15	28	27	172		15	88	74	18
	17	-	13	90		16	51	41	231		16	8	35	154
	18	-	6	0		17	66	63	200		17	54	26	153
	19	-	1	270		18	45	54	354		18	-	16	339
	20	41	70	180		19	36	44	0		19	42	40	179
	21	-	10	270		20	-	18	120		20	-	31	180
	22	-	19	0		21	-	19	336		21	42	34	15
						22	-	15	217					
$k=1$	0	-	233	270						$k=7$	0	63	119	90
	1	84	158	113	$k=4$	0	-	3	180		1	128	173	68
	2	426	500	6		1	262	307	185		2	169	172	339
	3	203 ,	162	4		2	93	71	297		3	155	162	165
	4	288	281	169		3	241	199	163		4	183	170	191
	5	148	125	267		4	131	148	61		5	74	84	260
	6.5	236	210	184		5	336	389	350		6	94	109	165
	7	224	224	118		6	-	47	106		7	135	131	358
	8	229	286	360		7	50	54	190		8	151	136	17
	9	74	118	69		8	107	107	280		9	64	71	192
	10	-	48	122		9	174	169	175		10	-	37	302
	11	25	50	289		10	-	16	65		11	77	93	224
	12	144	147	177		11	173	196	346		12	87	92	148
	13	116:-	91	175		12	-	17	87		13	86	85	350
	14	112	112	13		13	90	59	10		14	70	45	345
	15	28	31	130		14	57	47	230		15	-	19	86
	16	28	43	358		15	139	143	165		16	-	16	351
	17	39	32	330		16	-	4	79		17	43	44	157
	18	96	83	186		17	27	46	3		18	55	45	183
	19	-	17	218		18		15	82		19	21	28	339
	20	-	17	292		19	41	43	348		20		18	78
	21	-	7	135		20	-	9	258		21	-	7	355
	22	-	30	2		21	44	48	189					
						22	-	2	63	$k=8$	0	280	318	0
$k=2$	0	246	314	0							1	166	143	207
	1	370	363	26	$k=5$	0	57	40	90		2	110	76	113
	2	210	170	188		1	339	310	186		3	87	37	204
	3	232	174	320		2	-	18	20		4	209	219	188
	4	207	233	209		3	364	354	5		5	86	60	51
	5	295	302	208		4	-	65	91		6	216	147	7
	6	297	272	354		5	144	75	178		7	64	63	113
	7	211	172	18		6	65	58	325		8	45	47	4
	8	111	84	347		7	247	276	164		9	82	64	199
	9	175	153	355		8	30	11	265		10	129	151	192
	10	200	198	183		9	206	177	3		11	56	58	337
	11	152	125	186		10	-	3	318		12	52	57	36
	12	67	68	31		11	42	68	9		13	-	29	131
	13	73	78	118		12	72	61	16		14	76	80	8
	14	89	85	23		13	139	134	198		15	-	26	196
	15	74	74	336		14	37	20	257		16	66	78	184
	16	28	46	170		15	-	22	2		17	-	23	285
	17	65	51	222		16	55	31	123		18	-	3	90
	18	37	6	201		17	63	73	11		19	-	15	5
	19	50	43	143		18	-	10	40		20	46	44	356
	20	22	44	353		19	40	36	166					
	21	-	22	14		20	-	16	247	$k=9$	0	-	34	270
	22		10	152		21	37	19	218		1	-	66	275
											2	163	189	180
$k=3$					$k=6$	0	350	362	180		3	65	111	280
	1	223	216	4		1	256	271	354		4	139	133	350
	2	355	278	168		2	197	202	69		5	42	74	74
	3	348	358	168		3	-	26	323		6	110	113	347
	4	138	168	302		4	141	122	336		7	-	47	284
	5	126	57	6		5	264	280	192		8	144	138	175
	6	149	106	12		6	133	146	184		9	-	35	283
	7	304	311	12		7	87	83	338		10	-	23	360
	8	176	174	177		8	82	81	117		11	-	29	71
	9	129	116	211		9	165	150	13		12	111	99	354
	10	118	161	270		10	102	121	346		13	-	19	63
	11	75	58	159		11	128	138	159		14	58	53	173
	12	120	114	357		12	97	79	213		15	-	24	278
	13	127	130	13		13	-	22	128		16	24	36	188
	14	87	109	131		14	30	34	172		17	-	30	90

Table 3 (cont.)

	l	$\left\|F_{o}\right\|$	$\left\|F_{c}\right\|$	α°		l	$\left\|F_{0}\right\|$	$\left\|F_{c}\right\|$	α°		l	$\left\|F_{0}\right\|$	$\left\|F_{c}\right\|$	α°
	18	71	40	0		5	108	111	154		1	35	36	180
	19	-	3	101		6	30	36	340		2	35	48	176
						7	57	44	42		3	65	66	10
$k=10$	0	200	209	180		8	-	14	43		4	-	29	34
	1	107	100	173		9	86	99	333		5	-	12	13
	2	74	44	349		10	38	43	197		6	-	30	28
	3	62	39	152		11	73	71	205		7	43	56	186
	4	160	159	358		12	20	23	330		8	30	34	188
	5	30	48	10		13	-	12	167		9	25	32	343
	6	144	173	179		14	-	9	60		10	-	14	77
	7	-	31	185		15	30	41	9		11	39	34	10
	8	-	14	205		16	-	30	153		12	20	25	343
	9	72	58	193		17	-	19	173		13	18	31	175
	10	121	126	353										
	11	69	58	0	$k=13$	0	-	40	90	$k=16$	0	23	30	180
	12	-	32	195		1	99	87	29		1	25	46	320
	13	-	12	313		2	59	36	199		2	-	27	40
	14	56	57	184		3	120	123	163		3	-	22	54
	15	-	20	188		4	-	35	279		4	35	37	2
	16	73	68	2		5	28	14	351		5	35	44	168
	17	-	11	36		6	-	40	89		6	35	35	191
	18	-	6	53		7	86	102	30		7	22	30	333
	19	-	17	350		8	-	21	160		8	-	23	148
						9	80	67	171		9	20	25	29
$k=11$	0	-	9	270		10	-	16	314		10	38	36	10
	1	45	75	131		11	25	29	194		11	-	17	151
	2	99	94	21		12	-	14	343		12	-	13	235
	3	94	106	8		13	39	56	348					
	4	90	77	186		14	-	8	110	$k=17$	0	-	3	90
	5	-	40	279		15	-	6	217		1	-	10	8
	6	63	64	198							2	47	66	346
	7	71	85	185	$k=14$	0	48	45	0		3	25	28	183
	8	89	81	353		1	68	80	200		4	30	35	168
	9	-	18	358		2	25	16	288		5	-	19	244
	10	-	59	89		3	25	29	202		6	-	26	136
	11	-	31	290		4	-	19	164		7	-	6	13
	12	60	63	195		5	88	99	0		8	56	52	355
	13	54	57	174		6	20	25	22		9	21	9	172
	14	-	27	336		7	30	32	180		10	-	6	194
	15	-	20	82		8	-	16	219					
	16	-	24	28		9	36	52	165	$k=18$	0	40	38	0
	17	-	20	340		10	-	5	135		1	-	16	69
	18	-	25	177		11	44	55	10		2	-	24	191
						12	-	5	40		3	-	25	270
$k=12$	0	75	94	0		13	-	12	6		4	18	37	196
	1	106	125	25		14	-	16	295		5	-	2	161
	2	67	65	127		15	41	43	183		6	20	26	7
	3	-	33	321							7	-	8	126

Estimation of accuracy

(i) By examination of results

The standard deviation of individual bond lengths from their accepted values is $0.07 \AA$. The average value of those angles which might be expected to be tetrahedral is 109° and their standard deviation from the mean is 7°. These figures probably underestimate the accuracy attained.

(ii) Theoretical estimate

From a ($\sigma_{o}-\sigma_{c}$) map of the zero-layer projection, the standard deviation in y or z coordinate was found to be approximately $0.025 \AA$ (for light atoms). The accuracy of an x coordinate varies considerably according to the value of x. However, some estimate was
made of the average error in x coordinates by considering the average value of $\left.\right|_{2} \sigma_{c} \mid$ and $\left.\right|_{2} \sigma_{s} \mid$ in regions away from atoms. The standard deviation in x coordinate was thus found to be approximately $0.05 \AA$. Thus the standard deviation in bond length would be $\sim 0.06 \AA$.

Discussion of results

(i) General features of the molecule

The separation $\mathrm{N}_{3}-\mathrm{C}_{5}^{\prime}(1 \cdot 41 \AA)$ is approximately equal to that for a covalent single bond. The molecule resulting from this rearrangement to form a new sevenmembered ring has been called $2^{\prime}: 3^{\prime}$-isopropylidene, $3: 5^{\prime}$-cycloadenosine. It is seen that the sugar is ribofuranose and is joined to the purine at N_{9} by a β glycosidic link. The atoms of the purine ring system

Fig. 8. Bond lengths and bond angles in the cyclonucleoside, and those in analogous parts of adenine hydrochloride and of cytidine.
are, within the limits of experimental error, coplanar. C_{1}^{\prime} also lies in this plane, but C_{5}^{\prime} is $0.7 \AA$ from it. The sugar ring is puckered so that O_{1}^{\prime} and C_{3}^{\prime} lie $0.3 \AA$ away from, and on the same side of, the plane defined by $\mathrm{C}_{1}^{\prime}, \mathrm{C}_{2}^{\prime}$ and C_{4}^{\prime}. This plane makes an angle of 90° with that of the purine.

(ii) Comparison with adenine hydrochloride and cytidine

The standard deviation of bond lengths in the cyclonucleoside is such that only differences greater than $0 \cdot 15 \AA$ from those in the above two compounds can be considered as significant. In the purine part of the molecule such differences occur at $\mathrm{C}_{6}-\mathrm{N}_{6}$, $\mathrm{C}_{4}-\mathrm{N}_{9}$ and $\mathrm{C}_{8}-\mathrm{N}_{9}$. In the latter two cases the fact that the sugar is attached at N_{9} makes the occurrence of different bond lengths not unexpected, and it is seen that the angle $\mathrm{C}_{8} \mathrm{~N}_{9} \mathrm{C}_{4}$, also, is appreciably dif-
ferent in the two cases. It is probable that substitution at N_{3} will alter the predominant tautomeric forms of the molecule, and it would seem that the percentage double-bond character of $\mathrm{C}_{6} \mathrm{~N}_{6}$ is here less than in the adenine hydrochloride molecule. The average bond length $(1.34 \AA)$ in the purine ring system agrees with that ($1.36 \AA$) in adenine hydrochloride.

When the bond angles are compared, the result is somewhat unexpected. The standard deviation for angles in the purine part of the molecule is only 2°, compared with the value 7° obtained for the rest of the molecule, and the marked divergences from symmetry in adenine hydrochloride are reproduced most faithfully in the cyclonucleoside with the exception of $\mathrm{C}_{8} \mathrm{~N}_{9} \mathrm{C}_{4}$ (see above). Since no reason for greater accuracy in this part of the molecule has been discovered, the close resemblance must be taken as fortuitous, particularly as it is not reproduced with regard to bond lengths.

There appears to be little resemblance between the sugars of cytidine and of the cyclonucleoside with regard to structural details. This is not surprising since the five membered ring of single bonds does allow some flexibility of configuration which could easily be influenced by the proximity of the iodine ion, and by the isopropylidene substituents.

(iii) Hydrogen bonds

The only two hydrogen atoms associated with nitrogen or oxygen are those of the NH_{2} group at N_{6}. One of these is certainly involved in formation of a hydrogen bond with O_{2}^{\prime} of a neighbouring molecule, as the separation $2.86 \AA$ testifies. That the other hydrogen forms a bond between the nitrogen and the iodine ion is also suggested, since they are separated by only $3.5 \AA$ in the direction in which the hydrogen would be expected to lie. It is also observed that $\mathrm{C}_{6}, \mathrm{~N}_{6}, \mathrm{O}_{2}^{\prime}$ and I are approximately coplanar, which lends weight to the above interpretation.

(iv) The iodine environment

Approaches of carbon or nitrogen to the iodine ion appear to be of two kinds. One, approximately $4 \cdot 0 \AA$, is the expected van der Waals distance, and this type occurs on one side ($\mathrm{C}_{8}, \mathrm{C}_{1}^{\prime}$) of the molecule. The other is approximately $3.5 \AA$, indicating some sort of weak bond formation, perhaps of an electrostatic nature, between the iodine ion and carbon atoms on the other side of the molecule. A gratifying check on the correctness of the x coordinate of C_{5}^{\prime} is provided, since the iodine ion is approximately equidistant from C_{5}^{\prime} of the molecules above and below it, so that allocation of any coordinate other than that given would have resulted in an $\mathrm{I}-\mathrm{C}_{5}^{\prime}$ separation even smaller than the $3 \cdot 48 \AA$ observed. None of the distances between carbon, oxygen and nitrogen of different molecules is significantly less than the normal van der Waals approach of $3 \cdot 4-3 \cdot 5 \AA$.

X-ray investigation of a uridine derivative

It has been mentioned (Clark et al., 1952) that synthesis of uridine 5^{\prime} phosphate was successfully achieved via the 5 'iodo derivative of uridine, and consequently it may be assumed that this substance is a normal covalent iodide. In order to obtain direct evidence of this, and to emphasize the contrast between its structure and that of a cyclonucleoside, X-ray analysis of its structure in one projection was undertaken. The material, 5^{\prime}-iodo 2^{\prime} : 3^{\prime}-isopropylidene uridine, was provided by V. M. Clark and was recrystallized from a mixture of water and alcohol. Its cell dimensions are:

$$
a=5 \cdot 42, b=15 \cdot 4, c=16 \cdot 7 \AA(\pm 1 \%)
$$

Space group: $P 2_{1} 2_{1} 2_{1}$. Number of molecules per unit cell: 4.

Intensity data were obtained on zero-layer (0 kl) Weissenberg photographs using copper and molybdenum radiations, and the heavy-atom method was again used, followed by limited refinement, to provide the

Fig. 9. 5^{\prime}-Iodo, $2^{\prime}: 3^{\prime}$-isopropylidene uridine: electron density projected on (100). Contour interval for iodine is ten times that for other atoms.
electron-density map shown in Fig. 9. Clearly there has been no rearrangement of the molecule in this case. (It is known that the similar cytidine derivative rearranges to form the ionic $\mathrm{O}_{2}: 5^{\prime}$-cyclocytidine iodide.) A ball-and-spoke model of the molecule 5^{\prime}-iodo, $2^{\prime}: 3^{\prime}$ isopropylidene, $\mathrm{N}_{3}-\beta$-ribofuranosido-uracil was seen to fit the projection almost exactly.

As in cytidine (Furberg, 1950), and for similar reasons, the d-ribose ring lies in a position trans to O_{2} (with reference to the bond $\mathrm{N}_{3}-\mathrm{C}_{1}^{\prime}$), but in this case the $\mathrm{I}-\mathrm{C}_{4}$ distance is not short (cf. $\mathrm{O}_{5}^{\prime}-\mathrm{C}_{4}$ in cytidine).

Various chemical and stereochemical aspects of the cyclonucleoside structure not mentioned here are dealt with in the paper by Clark et al. (1952).

I wish to thank Prof. Sir Lawrence Bragg, Dr W. H. Taylor and Dr W. Cochran for the facilities, encouragement and advice they have given in the course of this work, and also Dr V. M. Clark and Dr D. M. Brown for supplying chemicals and for their advice on chemical matters. I am indebted to the Department of Scientific and Industrial Research for a maintenance allowance.

References

Bragg, W. L. (1952). Acta Cryst. 5, 474.
Broomhead, J. (1948). Acta Cryst. 1, 324.
Broomhead, J. (1951). Acta Cryst. 4, 92.
Clark, V. M., Todd, A. R. \& Zussman, J. (1951). J. Chem. Soc. p. 2952.

Clews, C. J. B. \& Cochran, W. (1948). Acta Cryst. 1, 4. Clews, C. J. B. \& Cochran, W. (1949). Acta Cryst. 2, 46. Cochran, W. (1951). Acta Cryst. 4, 81.
Cochran, W. \& Dyer, H. B. (1952). Acta Cryst. 5, 634. Dyer, H. B. (1951). Acta Cryst. 4, 42.
Furberg, S. (1950). Acta Cryst. 3, 325.
Raeucble, R. F. \& Rundle, R. E. (1952). Acta Cryst. 5, 85.
Sayre, D. (1951). Acta Cryst. 4, 362.

[^0]: * Now at the Department of Geology, University of Manchester, Manchester 13, England.

